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ABSTRACT
Background: Infants are at a high risk of acquiring fatal infections,
and their treatment relies on functioning antibiotics. Antibiotic
resistance genes (ARGs) are present in high numbers in antibiotic-
naive infants’ gut microbiomes, and infant mortality caused by
resistant infections is high. The role of antibiotics in shaping the
infant resistome has been studied, but there is limited knowledge on
other factors that affect the antibiotic resistance burden of the infant
gut.
Objectives: Our objectives were to determine the impact of early
exposure to formula on the ARG load in neonates and infants born
either preterm or full term. Our hypotheses were that diet causes a
selective pressure that influences the microbial community of the
infant gut, and formula exposure would increase the abundance of
taxa that carry ARGs.
Methods: Cross-sectionally sampled gut metagenomes of
46 neonates were used to build a generalized linear model to
determine the impact of diet on ARG loads in neonates. The model
was cross-validated using neonate metagenomes gathered from
public databases using our custom statistical pipeline for cross-
validation.
Results: Formula-fed neonates had higher relative abundances
of opportunistic pathogens such as Staphylococcus aureus,
Staphylococcus epidermidis, Klebsiella pneumoniae, Klebsiella
oxytoca, and Clostridioides difficile. The relative abundance of
ARGs carried by gut bacteria was 69% higher in the formula-
receiving group (fold change, 1.69; 95% CI: 1.12–2.55; P = 0.013;
n = 180) compared to exclusively human milk–fed infants. The
formula-fed infants also had significantly less typical infant bacteria,
such as Bifidobacteria, that have potential health benefits.
Conclusions: The novel finding that formula exposure is correlated
with a higher neonatal ARG burden lays the foundation that
clinicians should consider feeding mode in addition to antibiotic
use during the first months of life to minimize the proliferation
of antibiotic-resistant gut bacteria in infants. Am J Clin Nutr
2022;115:407–421.

Keywords: antibiotic resistance, neonate, infant formula, metage-
nomics, bioinformatics, microbiome, human milk, milk fortifier,
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Introduction
Antibiotic-resistant pathogenic bacteria cause approximately

214,000 neonatal deaths annually (1). Thus, understanding
factors that affect this vulnerable group’s resistance load is
crucial. Previously, it was presumed that antibiotic use plays the
most significant role in the rise of antibiotic-resistant bacteria
(ARB) in health-care settings. However, the transmission of ARB
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instead of antibiotic use has been suggested to play a major role
in global clinical resistance (2).

Antibiotic use has a well-established role in shaping the
resistome of infants. Antibiotic use affects the resistome in
an antibiotic-specific way as bacteria resistant to the given
antibiotic increase. Consequently, the abundance of the antibiotic
resistance genes (ARGs) carried by the resistant strains increases
simultaneously (3). It is known that the number and extent of
antibiotic treatments in infancy affect ARG abundance (3, 4).

Infants have greater concentrations of ARGs in their gut
microbiota than adults, even without being exposed to antibiotics
(3, 5–7). Therefore, the transmission of ARB and other selective
factors besides antibiotic treatment might drive ARG enrichment
in neonates and infants. However, there is limited knowledge
on the effect of selective pressure–causing agents other than
antibiotics on resistance loads in neonates and infants. Mobile
genetic elements (MGEs) transmit ARGs between bacteria,
possibly spreading ARGs in the infant gut microbiota, and ARGs
can be vertically transmitted from the mother or acquired from
the hospital environment (8–12). Consequently, to reduce infant
mortality caused by antibiotic-resistant bacteria, it is critical to
reduce the chances of transmission and find ways to modify the
gut environment to be less favorable for colonization by resistant
strains.

Feed type can have a substantial effect on the microbiota,
and previous studies suggest that diet can shift the abundance
of specific ARGs in the infant gut (5, 6, 13–15). However, the
magnitude of the impact of infant diet on the proportion of
resistant and multiresistant bacteria in the gut, referred to here
as the resistance load, is currently unknown.

We hypothesized that formula exposure, which influences the
infant gut microbiota, would also cause variation in the average
resistance load (5, 13, 14). We collected metagenomic data from
cross-sectional fecal samples taken at the age of 7 to 36 days
from 46 infants born prematurely between 27 and 36 weeks
of gestation. The average resistance load was approximated by
calculating the relative number of ARGs/copy of 16S RNA
gene. The collected cohort was used as a train set to construct
a generalized linear model (GLM) that could explain infant
antibiotic resistance loads. The GLM was cross-validated with
a custom statistical pipeline using an external test set comprised
of publicly available neonatal gut microbiota metagenomes (3, 5,
15–17).

Methods

Description of the study cohorts

A total of 46 infants born prematurely between 26–37 weeks of
gestation were included in phase 1 of the present study. Subjects
were selected from a set of infants born at Penn State Hershey
Medical Center (PSHMC) or transferred to the PSHMC neonatal
intensive care unit (NICU) within 72 hours of birth (n = 82).
The exclusion criteria were: inadequate DNA concentrations
(less than 20 ng of total DNA) and missing clinical information
(Figure 1). We collected extensive metadata on infant diet during
the first month of life to investigate the effects of formula and
fortifier exposure on the ARG load. We aimed to balance major
clinical parameters between formula-fed infants and infants who
did not receive any formula in their diet (Table 1). Infants were

sampled approximately 2 weeks after antibiotic treatment, and
the antibiotic treatment duration was short (0–2 days) to minimize
the effect of antibiotics. Hospital personnel and sample collectors
were not blinded for infant diet. Fecal samples were collected
at less than 36 days of age, and Illumina NextSeq sequencing
was performed at the Institute of Biotechnology (University of
Helsinki).

Twenty-one infants were fed a commercial infant formula
(Neosure), 20 were fed mother’s milk with human milk fortifier
(Similac), and 5 were fed only human milk (mother or donor).
The infants born at <32 weeks received fortifier. Infants
born at >32 weeks were fed formula per standard hospital
feeding protocols for infants born prematurely. Thirty of the
infants received antibiotics. In cases where the infant received
antibiotics, fecal samples were collected approximately 2 weeks
after the termination of antibiotic treatment to eliminate antibiotic
therapy’s potential confounding effect.

To obtain more samples to study the variables affecting the
ARG load in the neonate gut, we collected a meta-analysis in
addition to the original cohort of 46 infants. Literature searches
were performed using the keywords “metagenomics” AND
“infant,” “preterm” OR “newborn” OR “neonate.” We included
all available publications where neonatal gut samples (with
samples taken between 0 and 36 days of age) had been shotgun
metagenome sequenced using NextSeq or HiSeq (Illumina) with
read lengths from 100 to 250 base pairs. Only sequencing data
sets with 20 or more individually sampled infants were taken.
Other requirements were that data for gestational age, age at
sampling, delivery mode, diet until the day of sampling, and
antibiotic treatment of the infant were available. After filtering
out data sets that did not fulfill the qualifications, 5 data sets
were included in the meta-analysis (3, 5, 15–17). The data were
downloaded in fastq format, and in cases where infants were
sampled more than once, we used only the first sample. Only
samples with more than 1000 16S ribosomal RNA (rRNA) reads
identified using Metaxa2 were taken to the meta-analysis (18). In
total, the meta-analysis cohorts had 696 neonates. The participant
flowchart for each of the different analyses is depicted in Figure 1.

Experimental design

Our a priori hypothesis was that diet impacts the gut microbiota
of preterm infants and that infants fed formula would have a
higher ARG load than infants fed only human milk, due to
the changes in the community composition. To study the effect
of formula feeding, we drafted a statistical analysis pipeline,
including several steps to ensure model quality and the robustness
of the results (Figure 2).

As the first step in the statistical analysis pipeline outlined
in Figure 2, we used a random forest (RF) machine-learning
algorithm to identify explanatory variables linked to ARG load
in the preterm infant feces for ARG load model training. We
used RF variable importance to prefilter clinical parameters and
metadata to select which clinical variables we should use in the
subsequent model building.

Secondly, once we determined that the responses were linear,
we used gamma-distributed generalized linear models. We chose
this distribution because the data were ARG counts normalized
with 16S rRNA gene count, and thus were unsuitable for negative
binomial or quasi-Poisson distributions, and because the data

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcn/article/115/2/407/6408461 by guest on 08 N

ovem
ber 2022



Formula increases antibiotic resistance burden 409

Assessed (n = 863)
• Present cohort (n = 82)

• Bäckhed (5)  (n = 98)

• Rahman (15)  (n = 57)

• Gibson (3)  (n = 53)

• Baumann-Dudenhoeffer (16)  (n = 29)

• Shao (17)  (n = 544)

Included (n = 742)
• Present cohort (n = 46)

• Bäckhed (5)  (n = 69)

• Rahman (15)  (n = 57)

• Gibson (3)  (n = 50)

• Baumann-Dudenhoeffer (16) ( n = 20)

• Shao (17)  (n = 500)

Excluded (n = 121)
• Present cohort (n = 36)

• Low DNA concentration

• Missing metadata

• Bäckhed (5)  (n = 29)

• Small library size (16S rRNA  

gene reads < 1000)

• Missing metadata

• Rahman (15)  (n = 0)

• Gibson (3)  (n = 3)

• Small library size (16S rRNA  

gene reads < 1000)

• Baumann-Dudenhoeffer (16)  (n = 9)

• Small library size (16S rRNA  

gene reads < 1000)

• Shao (17)  (n = 44)

• Missing metadata

• Duplicate sample

Analyzed
• Model training (effect of formula in 

neonates)
• Included (n = 46)

• Excluded (n = 0)

• Model cross-validation (effect of 
formula in neonates)

• Included (n = 180)

• Excluded (n = 516)

• Infant received human 

milk fortifier without 

formula

• Unbalanced cohort size, 

Shao (17) 

• De novo model building (effect of 
formula in neonates)

• Included in analysis (n = 206)

• Excluded (n = 536)

• Infant received human 

milk fortifier without 

formula feeding

• Unbalanced cohort size, 

Shao (17)

• Effect of formula in full-term neonates
• Included in analysis (n = 315)

• Excluded (n = 427)

• Missing infancy sample

• Infant born preterm

• Effect of fortifier in neonates
• Included (n = 67)

• Excluded (n =  675)

• No fortifier given to any 

of the neonates in the 

cohort

• Infant was given formula

• Effect of early infancy formula 
exposure  in late infancy

• Included (n = 315)

• Excluded (n = 427)

• Missing infancy sample

• Missing metadata

FIGURE 1 Participant flowchart outlining the participants included in the different analyses and criteria for exclusion. Abbreviations: rRNA, ribosomal
RNA.

had overdispersed variances violating the normality assumption.
GLMs are a potent tool for hypothesis testing but thus far have
been used in only a limited number of microbiome studies (4, 19).
After the GLM distribution was selected, we used the variables
that could potentially affect ARG load to train the model using the
preterm cohort. Explanatory variables that did not significantly
explain variance in the ARG loads or did not improve the model
were dropped 1 at a time from the full model using Akaike
information criterion (AIC) values and chi-squared tests (α =
0.05). Model training ultimately resulted in the simplest model
possible explaining the variation in the data without overfitting
the model (20).

Thirdly, we confirmed the applicability of the model built using
data gathered for a meta-analysis as a test set. Lastly, we created

a de novo model, following similar steps as for the train set, to
confirm the association of formula with an increased ARG load
even when we considered all data and all clinical variables.

Ethical approval

The Institutional Review Board of Pennsylvania State Univer-
sity (IRB #35925) approved the study.

Sample collection

Enrolment commenced in January 2014 and concluded in
July 2017. Inclusion criteria were preterm infants born 26–
37 weeks of gestation who were admitted to the Penn State
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TABLE 1 Clinical data for the study population for infants by formula exposure1

Not formula-fed,
n = 25

Any formula feeding,
n = 21

Difference in means
between groups2

Infant antibiotic treatment 18 12 —
Infant amp + gent treatment 15 11 —
Infant amp + gent + van treatment 3 1 —
Duration of infant antibiotic treatment, days, median (IQR) 2 (0–2) 2 (0–2) —
Maternal antibiotic treatment 15 10 —
Cesarean delivery 14 15 —
Vaginal delivery 11 6 —
Weight at time of sampling, kg, median (IQR) 1.580 (1.360–1.980) 2.25 (2.060–2.400) —3

Sex female 9 10 —3

Sex male 16 11 —
Infant age, days, median (IQR) 17.00 (14.00–17.00) 17.00 (14.00–17.00) —3

Fortifier 20 0 —3

Breast milk only 5 0 —
Gestational age, weeks, median (IQR) 31.43 (29.86–32.86) 33.86 (33.43–34.00) —3

Infant infection 4 2 —
Necrotizing enterocolitis 0 0 —
Prolonged rupture of membranes 9 3 —
No group B Streptococcus 9 14 —
Group B Streptococcus 6 2 —
Unknown group B Streptococcus 10 5 —
Maternal diabetes 2 2 —
Maternal preeclampsia 3 10 —3

Length of stay in hospital, days, median (IQR) 38 (26–61) 21 (18–24) —3

1n = 46. The table shows the major clinical parameters. Full clinical data are shown in Supplemental Data 1. Abbreviations: amp, ampicillin; gent,
gentamycin; van, vancomycin.

2The column entitled “Difference between groups” indicates instances where the groups were not balanced (Student’s t-test).
3Significant difference between groups

Hershey NICU or transferred to the PSHMC NICU within
72 hours of birth. Exclusion criteria included the following:
infants born at <26 or >37 weeks of gestation, infants born
with major congenital anomalies (heart, gastrointestinal, renal,
or respiratory tract), mothers known to use illicit drugs or
abuse alcohol, or mothers with a history of depression requiring
long-term psychotropic medication. We obtained written consent
from all subjects’ parents within 48 hours of admission to
the PSHMC NICU. Metadata on feed history, clinical course,
and necrotizing enterocolitis (NEC) outcomes were collected
electronically during the entire course of stay in the PSHMC
NICU.

Fecal material was collected into sterile microcentrifuge tubes
approximately 2 weeks after prophylactic antibiotics had been
discontinued and enteral feeds were initiated. Samples were
frozen at −80◦C until analysis.

DNA isolation and quantification

Fecal samples were collected and shipped to Wright Labs,
LLC. Nucleic acid extractions were performed from approxi-
mately 0.25 g of feces using the Qiagen DNeasy PowerSoil
DNA Isolation kit following the manufacturer’s instructions
(Qiagen). The lysing was performed using the Disruptor Genie
cell disruptor (Scientific Industries). Genomic DNA was eluted in
50 μL of 10 mM Tris. Subsequent quantification was performed
using the Qubit 2.0 Fluorometer (Life Technologies) using the
double-stranded DNA high-sensitivity assay.

Metagenomic sequencing

The Nextera XT library preparation kit (Illumina) with
the manufacturer’s standard protocol was used for library
preparation. The library was paired-end sequenced using
1 NextSeq run targeting an average of 10 million reads per
sample. Sequencing and library preparation were done at the
Institute of Biotechnology’s sequencing services (University of
Helsinki).

Metagenomic analysis

We performed quality control using the FastQC and MultiQC
programs (21, 22). The sequences were trimmed using Cutadapt
version 1.10 with the options -m 1, -e 0.2, -O 15, and -q 20 to filter
out adapters and low-quality reads (23). Filtered metagenomic
sequence reads underwent subsequent microbial community
profiling using the annotation software MetaPhlAn2 version 2.6.0
with default settings (24). A merged abundance table was created
using the MetaPhlAn2 ’utils’ script. The merged abundance table
was edited to only include taxa, which MetaPhlAn2 identified up
to species level.

The 16S rRNA gene sequences were identified, extracted,
and quantified using Metaxa2 version 2.6.0 in paired-end mode
with default settings (18). The 16S rRNA gene sequence reads
were classified using the mothur version v.1.40.5 “classify.
seqs” command with SILVA version 123 as the reference
database, with the options cutoff set at 60, probs set as F,
and processors set at 8 (25, 26). A custom Unix script was
used to create an OTU (operational taxonomic unit) table
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Formula increases antibiotic resistance burden 411

FIGURE 2 Flowchart of analysis methods, describing the included cohorts and the statistical analysis pipeline devised for this study. The pipeline was
used to ensure that the effect of diet could be validated in several points of the analysis and that suitable distributions and model types are applied to the data.
Blue boxes describe steps in preliminary analysis with the training set of 46 infants, and green boxes steps taken in model testing and cross-validation with
meta-analysis cohorts. Abbreviations: ARG, antibiotic resistance gene.

based on the classifications. Samples with less than 1000 reads
mapping to the 16S rRNA gene were filtered out. Metabolic
genes were annotated using the HUMAnN2 (HMP Unified
Metabolic Analysis Network) pipeline with default settings

and with enzyme categories for gene annotation and grouping
(27).

We used Bowtie2 for mapping reads to ARG and MGE
databases with the options -D 20, -R 3, -N 1, -L 20, and -i S,1,0.50
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28). Following annotation, we used SAMtools version 1.4 was to
filter and quantify observed ARG and MGE annotations within
each sample (29). If both reads mapped to the same gene, we
counted the read as 1 match, and if the reads mapped to different
genes, both were counted as hits to the respective gene. We used
the ResFinder database version 2.1 to search for acquired ARGs
and an MGE database, including genes related to or annotated
as IS (insertion sequence), ISCR (insertion sequence common
region), intI1, int2, istA, istB, qacEdelta, tniA, tniB, tnpA, and
Tn916 transposons (6, 30). We searched for plasmid associated
genes using the PlasmidFinder database (31).

ARG and MGE count normalization

The Bowtie2 counts for ARGs and MGEs were normalized to
the length of each respective gene. Normalized gene counts were
then further normalized to the number of bacterial 16S rRNA
gene reads obtained from Metaxa2 output, divided by the 16S
rRNA gene’s length (18). These normalization steps yield an
approximation for the number of genes per 16S rRNA sequence
for each resistance gene while avoiding bias due to the differential
length of the resistance genes. We chose the 16S rRNA gene
for normalization instead of library size to account for variation
in nonbacterial DNA content in the samples, as explained in
Bengtsson-Palme et al. (32). The 16S rRNA gene normalization
allows us to approximate the number of resistance genes carried
by bacteria, presuming that the copy number of 16S rRNA
genes is similar in studied bacterial populations. The 16S rRNA
gene-normalized values were used in all downstream analyses.
However, we also compared unnormalized data and library size
normalized data to validate our choice of normalization, and
these yielded similar results to 16S rRNA normalized values
(Supplemental Results).

In addition to the 16S rRNA gene, we used the single copy
rpoB gene for alternative normalization. HMMER3 and the rpoB
Hidden Markow model retrieved from Pfam database were used
to count hits (33, 34). The “hmmsearch” command was run with
an e–02 threshold on sequences translated to amino acids in all
6 reading frames. Length normalization was done in the same
way as for the 16S rRNA gene. Statistical modeling for rpoB gene
counts was done using GLMs and the quasi-Poisson distribution
suitable for overdispersed count data (Supplemental Results).

Meta-analysis

We collected metadata for the samples from the National
Center for Biotechnology Information Sequence Read Archive or
related publications’ supplementary materials (3, 5, 15–17). The
metadata used in the meta-analysis are shown in Supplemental
Data 3. We also ran all models without the firstborn twin to
confirm estimates were not affected by twin pairs, since some of
the data sets included twins. We interpreted studies that specified
the infants were healthy or that pregnancies were normal as
indicating that subjects did not have NEC or preeclampsia. We
also analyzed the effects of other clinical parameters, such as
maternal diabetes, infant infection status other than NEC, and
antibiotic treatment duration, for those subcohorts where data
were available. However, they did not significantly improve the
models.

We did a preliminary analysis on the long-term effects of
being fed formula using data from Bäckhed et al. (5), Baumann-
Dudenhoeffer et al. (16), and Shao et al. (17). Supplemental
Note 2 lists the European Nucleotide Archive accession numbers
for the infants included in the longitudinal analyses from the
Bäckhed et al. (5) and Shao et al. (17) studies. The accession
numbers of the Baumann-Dudenhoeffer et al. (16) study are in
Supplemental Data 3.

GLMs confirmed the independence of the results of the
5 different cohorts and sequencing platform and library prepa-
ration method combinations, as including these explanatory
variables in the model did not improve the fit (Supplemental
Data 4).

We postulated that infants fed formula in addition to fortified
human milk would display similar effects as infants fed formula
in addition to unfortified human milk. We also assumed that
infants fed fortified human milk might differ from infants
receiving only human milk. Therefore, we excluded all infants
fed fortified human milk that did not receive formula and
compared human milk−exclusive diets and formula-containing
diets (n = 206). We separately analyzed the effects of human
milk supplemented with fortifier compared to an exclusively
human milk–based diet. In Bäckhed et al. (5), gestational ages
were between 39.3 and 41 weeks. Gestational ages were not
reported separately for each infant, and we used an approximate
gestational age of 40 weeks for all infants in this cohort.
ARG annotation and quantification, as well as Metaxa2 and
MetaPhlAn2 community profiling, were conducted for the
obtained meta-analysis data set as described above (18, 24).

Statistical analysis: model type selection and model training

All statistical analyses were performed in R version 3.6.1
(R Studio). MetaPhlAn2, Metaxa2, and HUMAnN2 annotation;
ARG and MGE mapping results; taxonomy; and metadata files
were compiled into individual data objects in phyloseq version
1.28.0 (18, 24, 27, 35). All custom R codes are available from
https://github.com/KatariinaParnanen. All figures were plotted
with ggplot2 version 3.1.1 (36). The flow of the statistical analysis
pipeline is outlined in Figure 2.

An RF analysis was performed using the caret package version
6.0–84 with training control using the “trainControl” command
with the option method “cv” and model fitting with “train”
command with the option method “rf,” and the importance
of the variable was computed using the “varImp” command
(37). All variables in the metadata were used in the RF
ANOVA importance (for the full list of available variables, see
Supplemental Data 1) to model the outcome variable relative
abundance of ARGs normalized by gene lengths and 16S rRNA
gene counts. Weight, which correlated with both age of the infant
and gestational age, and the type of maternal antibiotics, where
inadequate numbers of mothers received the same antibiotic,
were omitted from the analysis.

We compared different statistical model types to select the
best option for modeling the ARG/16S rRNA gene ratio in the
individuals from the 46-infant cohort. We examined the data for
signs of overdispersion. Because the variance for untransformed
data was much larger than the mean indicating overdispersion,
we excluded models with normality assumptions. The data had
positive continuous values, and the responses seemed to be linear.
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Therefore, we considered log-transformed normal and gamma
distributions as possible distributions for modeling the data.
Gamma distributions captured more of the variance than log-
transformed normal distributions. Thus, we chose the GLM with
gamma distribution and a natural logarithmic link function. The
GLM models were fitted with the “glm” command using the
option family “gamma” (link = “log”).

Model training for relative ARG abundance was performed
with the “step” function, relying on AICs and using chi-squared
tests by dropping out 1 variable or interaction term at a time and
checking whether the simplified model performed significantly
worse than the model with more explanatory factors. Diet was
coded as any formula (Formula), any fortifier (Fortifier), or no
formula or fortifier (Breast milk). We used the resulting simplified
model from model training to analyze the meta-analysis cohorts
without the trainset of 46 infants (n = 180) and with the trainset
cohort to investigate whether the model estimates change. We
also reperformed model selection with all the clinical metadata
and all the infants (n = 206) to examine whether formula was
retained in the rebuilt model that used all the meta-analysis data.

Statistical analysis for meta-analysis cohorts

For the meta-analysis, we explored generalized linear mixed-
effect models to investigate whether we should include random
effects caused by the study design, as well as sequencing
and library construction methods in the different meta-analysis
cohorts, in the model. However, the models indicated that there
was insufficient variation between cohorts to warrant random
effects. Models with the study as a random effect resulted
in singularity, indicating that the random structure was too
complicated. The random structure could not be simplified
further, meaning there were no study-dependent structures in
the variance. Thus, we chose gamma-distributed GLM without
random effects to study the relative ARG abundances.

To analyze the effect of formula on the relative ARG
abundance, we compared formula-fed infants to infants who were
exclusively fed human milk. To this end, we excluded all infants
fed fortified human milk who did not receive any formula, which
allowed for the analysis of 206 neonates (or 180 neonates after
excluding the infants from the train set). Because Bäckhed et al.
(5) did not report antibiotic use for each infant individually but
only stated that 2 of the 100 infants were treated with antibiotics,
these data were excluded from model validation on antibiotics’
effects in the meta-analysis.

We separately analyzed the effect of human milk supplemented
with fortifier on the relative ARG abundances compared to
an exclusively human milk–based diet. Power calculations to
estimate effect sizes and sample sizes for a given effect size were
performed using the “modelPower” and “modelEffectSizes”
commands in the lmSupport package version 2.9.13 (38).

We also explored log-linear models, but they underperformed
compared to the gamma-distributed model, with AIC values of
around 700 compared to 40 and R2 values of 0.16 compared to
pseudo-R2 values of 0.6 of the GLMs. Both metrics indicated
worse performance for log-linear models than for GLMs.

DESeq2 version 1.24.0 was used to analyze differentially
abundant taxa and genes (39). MetaPhlAn2 results were
transformed to counts for DESEq2 analysis by multiplying
the total 16S rRNA gene counts in each sample obtained

from Metaxa2 with the relative abundance values for each
sample from MetaPhlAn2. The transformed count data allow an
approximation of the differences in the abundance of a bacterial
species relative to all bacterial species between 2 groups of
interest, such as infants given formula and breast-fed infants.
Gene abundances were transformed by multiplying by 50,000 and
rounded to integers, resulting in normalized values that consider
variation in the genes’ lengths and the 16S rRNA gene counts
in different samples. Using this transformation, the difference
between a detected and an undetected gene is approximately
1.7-fold. A pseudo count of plus 1 was added to all samples to
enable comparisons between detected and undetected genes. We
tested several different options for transformation, but the results
did not differ.

Principal coordinate analyses for the taxonomic profiles,
metabolic pathways, ARGs, and MGEs were performed using
the “ordinate” command from the phyloseq package (35).
Distances between samples were calculated using the Horn-
Morisita similarity index and oriented using principal coordinate
analysis (40). Permutational multivariate analysis of variance
(PERMANOVA) between different groups was performed with
adonis from the vegan package version 2.5–5 using 9999
permutations, and the resulting P values were corrected with
the Benjamini-Hochberg procedure for multiple testing using the
“p.adjust” command in R (41).

Distance matrices for species, ARGs, and MGEs were
calculated using the Horn-Morisita similarity index with the
“vegdist” command in the vegan package and compared to
observe whether there were correlations between microbial
community and the ARGs and MGEs (40). Comparisons were
performed using a Mantel’s test from the vegan package with the
option method “Kendal” (41). Shannon and Simpson diversities
for taxonomic profiles, ARGs, and MGEs were calculated using
the package vegan. Differences in the diversities were compared
using an ANOVA and combined with Tukey’s post hoc test
from the “multcomp” R package to obtain adjusted P values for
the pairwise comparisons. ARG abundances in samples domi-
nated by different taxa were modeled with gamma-distributed
GLMs, and Tukey’s post hoc test from the “multcomp” R
package was used to obtain adjusted P values for the pairwise
comparisons.

Results

ARG load is affected by diet and gestational age in model
built using train set

We performed initial model-building steps using the preterm
cohort as a train set and followed our statistical analysis pipeline
outlined in Figure 2. We first performed an RF analysis to screen
those variables listed in Supplemental Data 1 with a possible
effect on ARG load and, after selecting gamma distribution and
generalized linear models as the appropriate analysis method, we
proceeded to model building, dropping 1 variable at a time from
the full model as described in Figure 2. The final model included
gestational age, 16S rRNA counts, and formula.

We could not link antibiotic treatment of the infant or the
mother to higher ARG loads [gamma-distributed GLM adjusted
with diet and gestational age and 16S rRNA counts, fold
changes 1.2 (P = 0.68) and 1.6 (P = 0.10), respectively].
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However, our study was designed to eliminate the effect of
antibiotic use since our interest was studying other effectors
than antibiotics, since their effects have been studied in detail
before, for example in Gasparrini et al. (4). Still, infants fed any
formula had significantly higher ARG abundances (normalized to
16S rRNA counts) than infants fed only breast milk or fed milk
supplemented with fortifier (gamma-distributed GLM adjusted
with gestational age and 16S rRNA counts, fold changes 4.3
(95% CI: 1.61–11.56) and 3.6 (95% CI: 1.61–8.9), respectively;
adjusted P values < 0.01; Figure 3A). However, infants fed
fortifier were more premature than infants fed formula, as per
hospital protocol, which causes a confounder. Additionally, we
analyzed differences in ARG loads using a more specific diet
description, including different feed sources (Supplemental
Data 2).

We next determined whether there was an effect of fortifier
supplementation on the ARG load. We observed no differences
between infants fed fortifier compared to infants fed only breast
milk (gamma-distributed GLM, Benjamini-Hochberg–adjusted
P > 0.05; Figure 3A). Additionally, there were no differences
between human milk–derived or bovine milk–derived forti-
fiers (gamma-distributed GLM, Benjamini-Hochberg–adjusted
P > 0.05; Supplemental Data 2). These results suggest that
in cases where infants require supplementary nutrition, the
addition of fortifier to human milk might have less of an
impact on the antibiotic resistance potential than switching to
formula.

In our data set, MGEs were significantly more abundant
(relative abundance normalized to 16S rRNA gene) in the
infants fed any formula than in infants fed exclusively hu-
man milk (gamma-distributed GLM, fold change 2.07; 95%
CI: 1.08–3.99; P < 0.05; Figure 3B). High numbers of
MGEs and ARGs could suggest that resistance genes might
be transferred between bacterial strains. Horizontal transfer
of ARGs can also cause the emergence of new antibiotic-
resistant strains of potentially clinically relevant pathogens (42).
ARG classes and bacterial families also varied with infant
diet (Figure 3C). The resistome and microbial community
composition were significantly correlated and grouped by
the dominant genus in the microbiota (Supplemental Results;
Figure 1).

Enterobacteriaceae are known to harbor several mobile ARGs
in their genomes; thus, we determined the effect of diet on the
Enterobacteriaceae abundance. Enterobacteriaceae were more
abundant in infants fed any formula than in infants who were
fed human milk (quasibinomial GLM, approximately 3-fold
higher abundance; gestational age as a cofactor, P < 0.05).
These data are in line with a previous report indicating that
formula increases the abundance of fecal Enterobacteriaceae in
infants born preterm (43). There were no significant associations
between the abundance of Enterobacteriaceae and other clinical
parameters. However, gestational age tended to be inversely cor-
related with the Enterobacteriaceae abundance (quasibinomial
GLM, 22% decrease/week of gestation; P < 0.1). Interestingly,
Enterobacteriaceae have been linked to the onset of NEC,
and both lower gestational age and formula feeding are well-
established risk factors for NEC. Gestational age significantly
affected the ARG load. Longer gestation translated to a lower
ARG abundance (Figure 3D; gamma-distributed GLM, fold
change, 0.72; 95% CI: 0.57–0.89; P < 0.001).

Several ARGs were significantly more abundant in formula-
fed infants, including SHV genes, which encode the extended-
spectrum beta-lactamase (ESBL) phenotype in Klebsiella
(DESeq2: adjusted P < 0.05; Figure 3E). The relative abundance
of SHV genes correlated with Klebsiella relative abundances
(quasibinomial GLM, fold change for SHV of 4% per 1% more
Klebsiella; 95% CI: 1.8%–6.7%; P = 0.002). Also, genes of all
the studied MGE classes were more abundant in formula-fed
infants than in human milk–fed infants (DESeq2; Figure 3E).
The enriched genes included the integrase gene, intI1, which
is part of the conserved region of class I integrons known to
sometimes confer multidrug-resistant phenotypes in clinically
relevant bacteria (44).

Cross-validation corroborates that formula increases ARG
load in neonates

We next sought to corroborate the impact of diet on the infant
gut ARG load by testing our model on subjects from other
metagenome cohorts. We included samples from 4 metagenomic
studies. The participant flow chart for the subjects is shown in
Figure 1. We excluded cohorts matching our literature reach
that did not have metadata for gestational age, diet, antibiotic
exposure, or infant age, and which included less than 20 infants
or had an unbalanced cohort size compared to other cohorts, re-
sulting in the inclusion of 4 cohorts. An additional fifth cohort by
Shao et al. (17), a cohort excluded from model testing, was used
to investigate the effect on formula feeding in full-term infants
during infancy, and the results are described in Supplemental
Results (17). The exclusion criteria for each study regarding
preexisting maternal and infant health conditions and maternal
drug and substance use are available in the original publications.
A summary of clinical parameters from the neonates included
in the meta-analysis is shown in Table 2 and described in more
detail in Supplemental Data 3 and 5. Supplemental Data 4 shows
the results of variable auto-correlations.

We tested the model built with the train set (ARG load ∼16S
rRNA counts + gestational age + formula) using the infants
from the 4 other included meta-analysis cohorts (Figure 1).
Infants with diets having any formula and exclusive human milk
were included and infants exposed to fortifier but not formula
were excluded (n = 180; Figure 1), following the statistical
analysis pipeline outlined in Figure 2. The test confirmed
that formula feeding increases the ARG load compared to an
exclusively human milk diet. Formula feeding was associated
with an approximately 70% increase in the relative abundance
of ARGs in the meta-analysis (n = 180; gamma-distributed
GLM, fold change for formula-containing diets compared with
exclusively human milk–based diet: 1.69; 95% CI: 1.12–2.55;
P = 0.013, adjusting for gestational age and 16S rRNA counts;
Figure 4A). Formula was associated with an increase of 69%
in the ARG load when not adjusting for other factors (n = 180;
gamma-distributed GLM, fold change: 1.69; 95% CI: 1.11–2.57;
P = 0.015). Gestational age and 16S rRNA counts, which were
the other 2 explanatory variables in the model built using the
train set, also significantly impacted the ARG load in the test set
(n = 180; gamma-distributed GLM, fold change for gestational
age/week of gestation: 0.94; 95% CI: 0.91–0.98; P = 0.0013;
Figure 4A). The effect of 16S rRNA counts was small but
significant (P < 0.01). We also normalized ARGs to the single
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FIGURE 3 Effects of diet and gestational age on ARGs and MGE abundances in the preterm infant cohort. (A) Relative ARG and (B) relative MGE sum
abundances by a diet containing either only human milk, any formula, or human milk and fortifier (n = 46). Infants fed any formula had higher ARG abundances
(normalized to 16S rRNA counts) than infants fed only breast milk or fed milk supplemented with fortifier [gamma-distributed GLM adjusted with gestational
age and 16S rRNA counts, fold changes 4.3 (95% CI: 1.61–11.56) and 3.6 (95% CI: 1.61–8.9), respectively; adjusted P < 0.01]. MGEs were significantly more
abundant (normalized to 16S rRNA gene) in the infants fed any formula than in infants fed exclusively human milk (gamma-distributed GLM, fold change
2.07 (95% CI: 1.08–3.99; P < 0.05). (A and B) The y axis denotes log10 transformed ARG or MGE copies normalized by 16S rRNA gene copied counted from
shotgun sequence data. Significance levels are denoted as follows: ∗∗ = 0.001–0.01; ∗ = 0.01–0.05; . = 0.05–0.1; ns = 0.1–1. The boxplot hinges represent
25% and 75% percentiles and centerline the median. Notches are calculated with the formula median ± 1.58 × IQR/sqrt (n). (C) Differences between most
abundant ARG classes and bacterial families. The x axis represents ARG copies normalized to 16S rRNA gene counts and percentage of bacterial family. (D)
Effect of gestational age and formula on relative ARG abundances. The x axis represents gestational age in weeks. The y axis has been square root transformed.
(E) Differentially abundant ARGs and MGEs using DESeq2 and an adjusted P value cutoff of 0.05 for the reported genes. Genes with positive values are more
abundant in formula-fed infants. The larger the point size, the more abundant the gene is in the samples. Abbreviations: ARG, antibiotic resistance gene; GLM,
generalized linear mode; MGE, mobile genetic element; MLSB, macrolide-lincosamide-streptogramin B; rRNA, ribosomal RNA.
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TABLE 2 Clinical data for the study population for infants by formula exposure in the meta-analysis cohorts1

Human milk,
n = 106

Any formula,
n = 90

Difference in means
between groups2

Infant antibiotic treatment 50 54 —
Infant ampicillin 49 54 —
Infant gentamycin 42 53 —3

Infant vancomycin 18 9 —
Infant cefotaxime 7 9 —
Infant clindamycin 0 2 —
Infant cefazolin 0 1 —
Infant ofloxacin 0 1 —
Infant meropenem 0 1 —
Infant ticarcillin clavulanate 2 1 —
No maternal antibiotic treatment 22 31 —
Maternal antibiotic treatment 34 40 —
Delivery mode cesarean 41 57 —
Delivery mode vaginal 65 33 —
16S rRNA gene counts median (IQR) 26,346 (7598–36,040) 38,820 (22,106–58,453) —3

Sex female 59 53 —
Sex male 47 37 —
Infant age, days, median (IQR) 7.0 (2.25–14.172) 7.0 (4.00–10.75) —
Fortifier4 16 8 —
Donor milk 2 2 —
Gestational age, weeks, median (IQR) 37 (28–40.0) 31 (29–37.75) —
Necrotizing enterocolitis 3 7 —
Maternal preeclampsia 16 8 —

1n = 196. The table shows the major clinical parameters by diet for the meta-analysis cohorts. Supplemental Data 3 has all collected metadata.
2The column entitled “Difference between groups” indicates instances where the groups were not balanced (Student’s t-test).
3Significant difference between groups
4Infants who received fortifier but did not receive formula were excluded from analyses for the effect of formula making the n = 180.

copy rpoB gene and library size, but the results did not differ from
those obtained using 16S rRNA normalized values (Supplemental
Results; Supplemental Table 1).

Neither supplementation of the infant’s own mother’s milk
with fortifier nor supplementation with donor milk had a
significant effect on the ARG load (Figure 4B; n = 67; gamma-
distributed GLM, P = 0.42 for fortifier and P = 0.91 for donor
milk, adjusting for 16S rRNA counts and gestational age). The
meta-analysis cohorts included 1 other study with infants fed
fortified mother’s milk and donor milk–fed infants (3). Again,
these results support the idea that fortifier and donor milk
supplementation have less impact than formula feeding on the
neonatal gut ARG load. However, the analyses lack the statistical
power necessary to draw definitive conclusions (power <0.5 for
fortifier and power <0.1 for donor milk).

The median ARG load was higher in the formula-fed infants
in all cohorts (Figure 4C), suggesting that formula-fed neonates
may exhibit higher intestinal ARG loads, independent of the
study design or gestational age. The most prevalent ARG classes
differed between the 2 diets, especially for aminoglycoside
and macrolide-lincosamide-streptogramin B (MLSB) ARGs,
which were more abundant in infants fed formula (gamma-
distributed GLM; P < 0.05; Figure 4D). Actinobacteria and
Bacteroidia were significantly enriched in human milk–fed
infants and Gammaproteobacteria was enriched in formula-fed
infants (quasibinomial GLM, P < 0.05, Figure 4D).

The ARGs of formula-fed infants and infants fed exclusively
human milk clustered separately (all cohorts, n = 206, including
26 infants not fed fortifier in the trainset; PERMANOVA,

Horn-Morisita similarity: R2 = 0.011; adjusted P = 0.004).
Notably, several ARGs were enriched in formula-fed infants
(n = 206; DESeq2: P < 0.05; Figure 4E). The enriched
genes included potential ESBLs of the SHV type (P < 0.05;
Figure 4E), the mecA gene encoding methicillin resistance in
Staphylococcus species, and the MLSB resistance gene ermC
encoding erythromycin resistance, typically in Staphylococcus
aureus. The SHV, mecA, and ermC genes confer resistance
phenotypes, all of which are highly relevant in NICUs (45).
Sulphonamide resistance genes of the sul1 type were more
abundant in formula-fed infants, indicating the enrichment of
class 1 integrons, which contribute to multidrug resistance in
bacteria, including Enterobacteriaceae (46).

De novo refinement of the initial model

Because our original cohort was small (n = 46), we
reperformed de novo model selection for the gamma-distributed
GLMs, modeling ARG loads on all collected variables in both the
meta-analysis data set and trainset (n = 206; Supplemental Data
3). Infant and maternal antibiotic use, gestational age, infant age,
delivery mode, 16S rRNA gene count, and diet had importance
values >0 in our RF analysis, and we included them in the
full de novo model. We also added sex, preeclampsia, history
of NEC, and the type of antibiotics used, as they might also
affect the ARG load. The results of the full de novo model are
shown in Supplemental Data 4. The final refined de novo model
included formula use, as expected, as well as gestational age,
16S rRNA counts, infant’s age, and vancomycin and fortifier
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FIGURE 4 Effect of formula feeding on neonatal gut resistome in meta-analysis cohorts. (A) Differences in relative ARG sum abundance/16S rRNA gene
copy numbers in infants only fed human milk or any formula. (n = 206; n = 180 for other cohorts; n = 26 for infants not fed fortifier in the train set cohort).
Formula feeding was associated with an approximately 70% increase in the relative abundance of ARGs in the meta-analysis [n = 180; gamma-distributed GLM,
fold change 1.69 (95% CI 1.12, 2.55); P = 0.013, adjusting for gestational age and 16S rRNA counts]. (B) Differences in relative ARG sum abundance/16S
rRNA gene copy numbers in infants fed human milk or any fortifier (n = 67). Neither supplementation of the infant’s own mother’s milk with fortifier or donor
milk had a significant effect on the ARG load (gamma-distributed GLM, P = 0.42 for fortifier; P = 0.91 for donor milk, adjusting for 16S rRNA counts and
gestational age). (A and B) A regression line is fitted using gamma-distributed GLMs. The y axes have been square root transformed. Dot sizes depict infant
ages, with larger dots being older infants. (C) Effect of formula on ARG load in meta-analysis data sets by cohort (n = 206). The boxplot hinges represent 25%
and 75% percentiles and centerline the median. Notches are calculated with the formula median ± 1.58 × IQR/sqrt (n). (D) Differences between most abundant
ARG and bacterial classes by diet in meta-analysis data sets. (E) Differentially abundant ARGs in infants with different diets using DESeq2 analysis and an
adjusted P value cutoff of 0.05 for reported genes. Genes with positive values are more abundant in formula-fed infants, and genes with negative values are
more abundant in exclusively human milk–fed infants. (F) Differentially abundant genera in infants with different diets using DESeq2 analysis and an adjusted
P value cutoff of 0.05 for reported genera. Genes and genera with positive values are more abundant in formula-fed infants, and genes with negative values are
more abundant in exclusively human milk–fed infants. (E and F) The larger the point size, the more abundant the gene is in the samples. Abbreviations: ARG,
antibiotic resistance gene; GLM, generalized linear mode; MLSB, macrolide-lincosamide-streptogramin B; rRNA, ribosomal RNA.
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use. Formula-fed infants had 57% higher ARG loads (gamma-
distributed GLM; n = 206; fold change 1.57; 95% CI: 1.12–
2.19; P < 0.009; Supplemental Data 4). The model built using
the preterm infant cohort explained approximately 43% of the
ARG load variation, and the de novo model explained 74% of
the variance (0.77 pseudo-R2 calculated using the Cragg-Uhler
method).

Consistent with our data set for preterm infants, antibiotic use,
which was treated as a binary categorical variable (yes or no), did
not improve the model in the meta-analysis data set for neonates
(n = 206; chi-squared test: P = 0.96; gamma-distributed GLM,
fold change = 0.98; 95% CI: 0.47–2.03; P = 0.96; Supplemental
Data 4). However, our study was not designed to investigate
the effect of antibiotics specifically, and thus, it should not be
concluded that antibiotics do not influence the ARG load. The
result merely indicates that for our data set and model, the
inclusion of antibiotics did not improve the model fit. Additional
results of the possible effect of antibiotics are described in
the Supplemental Results. Only 1 of the antibiotics given to
the infants, vancomycin, was correlated significantly with the
ARG load and was associated with a decreased ARG load in
neonates (n = 206; gamma-distributed GLM: fold change 0.53;
95% CI: 0.30–0.92; P = 0.025). Vancomycin is often prescribed
to treat infections caused by methicillin-resistant Staphylococ-
cus aureus and Staphylococcus epidermidis, which are often
multiresistant.

Formula-fed infants have more potential pathogens
possessing ARGs

There were significant differences between the intestinal
microbial communities of infants fed any formula and infants
exclusively fed human milk (n = 206). Genera belonging to the
obligate anaerobic families Bifidobacteriaceae, Veillonellaceae,
Clostridiaceae, Lachnospiraceae, and Porphyromonadaceae
were depleted in formula-fed infants, and, in contrast, the
facultative anaerobic families Enterobacteriaceae, Staphyloc-
coccaceae, and Enterococcaceae were enriched in formula-
receiving subjects (Figure 4F; DESeq2: P < 0.05). In addition
to genera, several potentially pathogenic species, including the
facultative anaerobes Staphylococcus aureus, Staphylococcus
epidermidis, Klebsiella pneumoniae, Klebsiella oxytoca, and the
strict anaerobe Clostridium difficile (currently Clostridioides dif-
ficile) were enriched in formula-fed infants (DESeq2: P < 0.001;
Figure 5A; Supplemental Data 5). In contrast, typical infant-
associated species, such as Bifidobacterium longum and Bac-
teroides and Parabacteroides spp., were depleted in the
formula-fed infants (P < 0.001; Figure 5A; Supplemental
Data 5).

We observed that the infants who had microbial communities
dominated by different genera (not accounting for differences
in diet) had significantly different ARG loads. Staphylococcus-
dominant infants had the highest relative abundances of ARGs
(gamma-distributed GLM: n = 242; adjusted P < 0.05;
Figure 5B; Supplemental Data 6). The ARGs also clustered
distinctly by the dominant genus, confirming that the microbial
community composition likely drives differences in the resistome
as well (PERMANOVA: n = 242; adjusted P < 0.05; Supplemen-
tal Data 6; Supplemental Results; Figure 2). Somewhat to our
surprise, infants fed formula had significantly lower microbial

community diversity than infants exclusively fed human milk
[gamma-distributed GLMs, n = 242; Shannon: 0.81 (95% CI:
0.68–0.96); Simpson, fold change: 0.81 (95% CI: 0.69–0.96);
P = 0.01; Figure 5C and 5D; Supplemental Data 5). The opposite
has been observed in older infants (16, 47, 48). However, our
result is similar to previous observations in preterm infants
sampled in the neonatal period (43).

Discussion
Our study aimed to determine whether formula feeding in

the neonatal period and early infancy affects the infant gut
microbiota and ARG load. The primary outcome of the study
was that formula feeding is associated with a 70% increase in
ARG abundance in neonates compared to infants fed only human
milk. Our finding was novel and was validated using several
independent cohorts, suggesting that the effect of formula is
generalizable in the neonatal population. The ARG load in the
premature infant gut was nearly doubled in infants receiving
formula compared to infants receiving only human milk.

In addition, the secondary outcome variables of gestational
age and infant age affected the ARG load, with younger and
more premature infants having higher ARG loads. Antibiotic
exposure did not improve our model for ARG loads in full-term or
preterm infants, even though antibiotic use as a whole increases
the global prevalence of antibiotic-resistant genes (49). However,
our study was not designed to investigate the role of antibiotics;
antibiotic use was treated as a binary variable, many of the infants
received antibiotics only for a few days, and often the sampling
was done several days after the treatment had finished. The lack
of a significant effect of antibiotic use on increases in the ARG
load might also be partly due to antibiotics sometimes being used
to treat infections caused by multiresistant pathogens carrying
multiple resistance genes. Thus, treatment subsequently might
decrease the ARG load when the abundance of the multiresistant
pathogen is reduced, and surviving strains carry fewer resistance
genes. We hypothesized this to be the case with vancomycin
treatment of neonates, which was associated with a reduced
ARG load. Overall, further studies are required to understand the
relationships between premature birth, infant age, diet, antibiotic
use, and ARG load.

Formula-fed neonates harbored increased abundances of
Enterobacteriaceae and clinically relevant ARGs that can
potentially confer methicillin resistance in Staphylococcus au-
reus and ESBL phenotypes compared to subjects fed human
milk exclusively. Interestingly, Enterobacteriaceae have been
suspected of contributing to NEC’s pathogenesis, and prematurity
and exposure to formula are well-established risk factors for
NEC (50–53). Somewhat surprisingly, formula feeding reduced
neonatal gut microbial diversity. Typically, older formula-fed
infants have lower diversity than breastfed infants (16, 47, 48,
54). Exclusively breastfed infants often harbor high numbers of
bifidobacteria, resulting in low diversity. However, bifidobacterial
dominance may take longer to establish than domination by
facultative anaerobes promoted by formula feeding, as the
abundance of bifidobacteria is highest at 3–6 months of age
(5, 55). Our results suggest that the changes in formula-fed
infants’ intestinal environment may result in simple microbial
communities enriched with ARG-carrying facultative anaerobes,
in contrast to the more diverse and less antibiotic-resistant
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A B

C D

FIGURE 5 Microbial community changes linked to ARG abundances in the meta-analysis cohorts. (A) Species enriched or depleted in formula-fed
neonates. Negative/positive values reflect significant enrichment/depletion in formula-fed neonates using DESeq2 analysis. Species with negative values are
enriched in formula-fed infants, and species with positive values are depleted in infants fed formula, with an adjusted P value cutoff of 0.05 for reported species.
(B) Relative ARG abundances in neonates whose guts are dominated by different genera. Significance levels are denoted as follows: ∗∗∗ = 0–0.001; ∗∗ = 0.001–
0.01; ∗ = 0.01–0.05. Staphylococcus-dominant infants had the highest relative abundances of ARGs (gamma distributed GLM: n = 242, adjusted P < 0.05;
Supplemental Data 6). (C) Shannon and (D) Simpson (1—D) diversity indexes by formula consumption in neonates. Infants fed formula had significantly lower
microbial community diversity than infants exclusively fed human milk gamma-distributed GLMs [n = 242; Shannon: 0.81 (95% CI: 0.68–0.96); Simpson:
fold change, 0.81 (95% CI: 0.69–0.96); P = 0.01]. (B–D) The boxplot hinges represent 25% and 75% quantiles, and the centerline shows the median. Notches
are calculated with the formula median ± 1.58 × IQR/sqrt (n). Abbreviations: ARG, antibiotic resistance gene; GLM, generalized linear mode.

communities of infants only fed human milk. The current study
showed that the ARG load and resistome relate to the microbial
community structure, and taxa enriched in formula-fed infants
correlate with a higher ARG abundance.

We did not include follow-up on the subjects to determine
whether those infants who were fed formula or had higher ARG
abundances had more infections caused by antibiotic-resistant
bacteria or whether their health was impacted otherwise. We
are limited to extrapolating from ARGs identified from shotgun
metagenome data, which means that we cannot confirm that the
ARGs are functional and confer resistance or identify the host of
the ARG accurately. The identification of the ARGs is also reliant
on short reads, which limits the resolution of distinguishing
between variants. The findings of our study can be applied to

practice in the clinic when it is known how ARG carriage impacts
infant health. The effect of fortifiers on the ARG load should
also be more extensively investigated to ensure that their use is
beneficial compared to infant formula.

In conclusion, our data suggest that a diet containing only
human milk in the first months of life reduces the ARG load
by modulating the microbial community to favor non-ARG-
carrying bacteria. The results add to the body of knowledge
on breastfeeding’s health benefits in both full-term and preterm
infants. Infants born prematurely are at particular risk of acquir-
ing severe and life-threatening infections. Thus, increased ARG
loads in formula-fed infants and the enrichment of potentially
pathogenic bacteria are concerning. Supplementing human milk
with fortifier was not associated with high ARG abundances,
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which is reassuring in light of current nutrition guidelines
for infants born prematurely. Clinicians are encouraged to be
prudent when using antibiotics to limit the spread of antibiotic
resistance. Accordingly, our results suggest that clinicians should
assess the risks associated with elevated antibiotic resistance
gene abundance coupled with increased opportunistic pathogen
prevalence in the infant gut microbiota when making choices
about feeding methods, since formula feeding was associated
with increases in both. Our results suggest that when necessary
to provide additional nutritional support, supplementation of
human milk with fortifier might have a smaller impact on
the intestinal ARG load than transitioning to infant formula,
potentially reducing the risk for infections caused by antibiotic-
resistant bacteria.
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